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FRANCISCO ANTONIO DORIA

IS THERE A SIMPLE, PEDESTRIAN ARITHMETIC SENTENCE
WHICH IS INDEPENDENT OF ZFC?

ABSTRACT. We show that theP < NP conjecture can be formulated as a50
2 sentence,

and explore some of the consequences of that fact. This paper summarizes recent work by
the author with N. C. A. da Costa on theP < NP conjecture and on the possibility that
this sentence is independent of ZFC supposed consistent.

1. INTRODUCTION

Can we find a simple, pedestrian, fully arithmetic question that can be
shown to be independent of the axioms of set theory? A question so simple
that can be understood by the nonmathematician, and yet whose solution
leads us to deep and difficult foundational questions?

The present paper suggests one such candidate, theP < NP question.
A few years ago the author was asked by his department’s secretary the
following question, which we formulate as a short tale:

Mrs. H. is a gentle and able lady who has long been the secretary of a large university
department. Every semester Mrs. H. is confronted with the following problem: there are
courses to be taught, professors to be distributed among different classes of students, large
and small classes, and a shortage of classrooms of varying sizes. She fixes a minimum
acceptable level of overlap among classes and students and sets down (in a tentative way)
to get the best possible schedule, given that minimum desired overlap. It’s a tiresome
task, and in most cases (when there are many new professors, or when the dean changes
the classroom allocation system) Mrs. H. feels that she has to check every conceivable
scheduling before she is able to reach a conclusion. In despair she asks a professor whom
she knows has a degree in math: “tell me, can’t you find in your math an easy way of
scheduling our classes with a minimum level of overlap among them?”

The formal equivalent of Mrs. H’s question is of course theP = NP
question (the negation ofP < NP ),1 whose precise, formal statement we
discuss below.

Mrs. H’s difficulties arise because the number of cases to be examined
blow up in an exponential way as the number of classes, professors and
classrooms increases. However we must give precision to her query,
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. . . can’t you find an easy way of scheduling our classes with a minimum level of overlap
among them?

This is formalized by supposing that the easy answer should be time-
polynomial on the input. Granted this (and given a coding assumption,
that every input and output is binarily coded) we can formalize Mrs. H’s
question as theP = NP question (see below).

We conjecture thatP = NP andP < NP are independent of the ax-
ioms of Zermelo–Fraenkel set theory, the axiom of choice included (ZFC).
The present paper wishes to present our case: to give the reasons why
we think so, and to sketch a program to settle the matter in the desired
direction.

This conjecture seems to run against the feelings of most researchers in
the area, who think that the matter will be eventually decided in the direc-
tion of ZFC proving thatP < NP . Yet there is a result by DeMillo and
Lipton (1980) (see the comments in Johnson (1990)) that proves the con-
sistency ofP = NP with fragments of number theory. There is, moreover,
the well-known Baker et al. (1975) relativization result These rather coun-
terintuitive results could be reconciled if we had an independence result
for P = NP .

1.1. A Very Short Historical Note

For the references see Machtey and Young (1979). Problems in theNP

class can always be settled, but it’s difficult to get a solution in the general
case. However, if we “guess” a solution, it is easy to check that it actually
settles the problem. Now substitute “difficult” for “exponential-time in the
length of the input”, and “easy” for “polynomial-time in the length of the
input”, and we (intuitively) get theNP class.

Class importance has to do with the fact that several everyday problems
appear in it, such as Mrs. H’s problem above. Characterizations and first
examples were given by Cook (1971) and Karp (1972). A first review was
given in the book by Garey and Johnson (1978). Finally, a first important
result was obtained by Baker et al. (1975).

2. P < NP AS A 50
2-SENTENCE

We can intuitively formulate the main characteristics of a problem in the
NP -class:

It is easy to check whether a possible solution satisfies a given instance of the problem, but
the only known ways to actually find a solution, in the general case, are equivalent to the
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following procedure: list all possible solutions and test each one against the instance of the
problem.

That procedure blows up exponentially as a function of the size (expressed as the length)
of the input.

If we understand that “polynomial time on the length” (for a binarily
coded expression) adequately translates “easy” then we can formulate the
AR class of nondeterministic polynomial, orNP -problems, as follows: let
pR be a fixed positive-definite polynomial that depends onR; let R(x, y)
be a recursive, polynomial predicate such that we can explicitly com-
pute the Gödel number of the corresponding characteristic function, and
let |x| be the length ofx, expressed in binary notation in the canonical
enumeration. Then (Baker et al., 1975; Johnson 1990):

DEFINITION 2.1.x ∈ AR ↔Def ∃y(|y| ≤ pR(|x|) ∧ R(x, y)). �

x is the instance of the problem, andy the solution.R(x, y) gives the
“easy” (polynomial) test ofy; if it holds, theny “settles”x. The bounding
condition |y| ≤ pR(|x|) ensures that if we list all possible solutions forx
(all possibley), that list will roughly equal 2pR(|x|). Therefore, given that
approach, we will need an exponential time (in the length|x| of the input)
to settle instancex.

We can define:

DEFINITION 2.2.NP = {AR: all R}. �

Now there is a trick that we can use (Baker et al. 1975) in order to
effectively enumerate expressions for all polynomial machines.

Then letPm be the polynomial machine of indexm according to that
enumeration. Ifx is input toPm, we can form the predicate:

DEFINITION 2.3.AR(m, x)↔Def R(x,Pm(x)). �

(We can informally readAR(m, x) as “polynomial machine of indexm
settles instancex of AR.”)

Finally, P < NP is, roughly, there is no easy way to settle all in-
stances of a problemAR. More precisely, no polynomial algorithm settles
all instances ofAR, or,

DEFINITION 2.4.P < NP ↔ ∀m∃x¬AR(m, x). �

So,P < NP is given by a50
2 sentence. If we put,
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DEFINITION 2.5.fR(m) = µx¬AR(m, x). �

We conclude,

COROLLARY 2.6.P < NP ↔ fR is total. �

T -provably Total Recursive Functions

T is here either Peano arithmetic (PA) or Zermelo–Fraenkel set theory
with the full Axiom of Choice (ZFC). The concept we now introduce
originated in Kreisel (1951, 1952): roughly a recursive functionf is
T -provably recursive if, for some Gödel numbere:

1. T proves thate is the Gödel number off , and
2. For eachx, T proves that the computation off (x) converges.

In what follows we suppose that all variables are restricted toω, the set
of natural numbers. Formally,

DEFINITION 2.7. A T -unary functionf is T -provably total unary re-
cursive if for some Gödel numberef for f , T ` ∀x∃z(T (ef , x, z) ∧
∀y(f (y) = {ef }(y)). �

It follows,

COROLLARY 2.8. If f is a T -provably total unary recursive function,
then there is ag, such thatg is T -provably total unary recursive function
andg boundsf , that is, for eachx, g(x) ≥ f (x). �

Therefore the operation time off is bounded by the operation time of
the bounding function, and as a result we have a proof inT that every
computation off converges.

However the concept ofT -provably total recursive unary functions
isn’t a trivial one: list allT -provably total unary recursive functions. Then
diagonalize over that list. We get a total unary recursive function which
isn’t in the list.

Moreover, those non-T -provably total unary functions ‘top’ allT -
provably total unary functions:

• Say thatf dominatesg if f (x) ≥ g(x) but for a finite number of
values. Then ifg isn’t dominated byf , g overshoots infinitely many
times throughf .
• Corollary 2.8 implies that ifg isn’t dominated by anyT -provably

total recursive unary function, then it isn’t aT -provably total unary
function.



www.manaraa.com

IS THERE A SIMPLE, PEDESTRIAN ARITHMETIC SENTENCE 73

That is,

COROLLARY 2.9. If, for anyT -provably total recursive unary function
f we have thatg overshoots throughf infinitely many times (that is, for
infinitely manyx, g(x) > f (x)), theng isn’t aT -provably total recursive
unary function. �

3. PROVABILITY OF P < NP IN A GIVEN AXIOMATIC SYSTEM T AND

T -PROVABLY TOTAL RECURSIVE FUNCTIONS

Why do we need that quite restrictive concept? Because of the following:
roughly, PA (or for that matter ZFC) proves thatP < NP if and only if fR
is provably total unary recursive in this strict sense in the corresponding
theory. For:

• We can explicitly compute a Gödel number for the characteristic
function ofR.
• Follows that we can explicitly compute a Gödel number forfR.
• Let e be that Gödel number. Then{e} = fR.
• As the proof ofP < NP is the proof of the formal sentence
∀x∃y[fR(x) = y], we get our conclusion.

Therefore we can find the status of the50
2 sentence that formalizes

our intuition aboutP < NP if and only if we can settle whetherfR is
T -provably total or not.

3.1. Two Possible Ways to Proceed

How can we establish the status ofP < NP in T , given the preceding
remarks? There are two ways to proceed:

1. We can recursively enumerate allT -provably total recursive unary
functions inT .
Then is there a way we can comparefR with each one of the provably
total functions in the enumeration, and decide whetherfR belongs to
the list or not? (See da Costa and Doria (1999b) on that possibility.)

2. Or we can try to use Corollary 2.9 and see whetherfR is dominated
by one of theT -provably total recursive unary functions or not.
Recall that recently Wainer (1999) extended the hierarchy of fast-
growing PA-total recursive functions well into ZFC.



www.manaraa.com

74 FRANCISCO ANTONIO DORIA

3.2. Preliminary and Partial Results

Recently Cucker, in a private exchange of e-mail messages with da Costa
and Doria, constructed the following functionh:

EXAMPLE 3.1. Suppose given Baker et al. (1975) a fixed, recursive
enumeration

P0,P1,P2, . . . ,Pm, . . . ,

of the polynomial Turing machines; suppose also given the canonical enu-
meration of binary words∅, 0, 1, 00, 01, 10, 11, 000, 001,. . . which code
the empty word itself∅ and the integers 0, 1, 2,. . . .

Let Pm(x) be one such polynomial Turing machine; it inputs binarily
coded numbersx. Let 2x be the exponential function, computed by the
usual exponential machine. Form the predicate

C(m, x)↔Def Pm(x) < 2x.

Define the functionh(m) = µxC(m, x). Of courseh is intuitively total
recursive.

Is it PA-provably total recursive? ZFC-provably total? �

Recent work (da Costa and Doria (1999a) suggests that this isn’t the case.
Now there is a recursive, partial maph → fR in such a way that we can
show that the fast-growing “peaks” of the functionh appear in a similar
way within fR. Howeverh is intuitively total (total in the standard model
for arithmetic) while there is no clear indication thatfR is intuitively total.

REMARK 3.2. Let’s elaborate on that:

• Suppose that 2x represents the exponential Turing machine that com-
putes the same function for argumentx.
• Then the Turing machinePa that:

a) Inputsx and outputs 2x , for x ≤ a, a a constant;
b) Inputsx and outputs 0, for allx > a,

is polynomial.
• If F is any total recursive function, then the infinite family of Turing

machinesPF(n), n = 0, 1, 2, . . . , is a family of polynomial machines.
• Now let T be an exponential machine that settles all instances ofAR.

Then the machineQa, given by:

a) Inputsx and outputsT(x), for x ≤ a, a a constant;
b) Inputsx and outputs 0, for allx > a,
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is again polynomial. (This machineQa settles all instances ofAR up
to x = a.)
• And again, forF as above, the family of Turing machinesQF(n), n = 0,

1, 2, . . . , is a family of polynomial machines. They settle the instances
in AR up to the boundF(n), eachn.

EachPF(n) andQF(n) can be given an index in the enumeration referred
to in the beginning of Example 3.1. If every two consecutive elements
of the sequence can be kept “reasonably close” in the above indexing
for polynomial machines, no matter how fast-growing isF, then we have
functionsh andfR that may overshoot infinitely many times above any
prescribed function in the Wainer (1999) hierarchy.

For details see da Costa and Doria (1999a,b). �
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NOTES

1 For a preliminary discussion of the ideas of da Costa and Doria on these matters see
Doria (1996); for the equivalence between an allocation problem such as Mrs. H’s and the
satisfiability problem, for instance, see Machtey and Young (1979).
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